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Equations governing the flow behavior of Sm-C and Sm-C* liquid crystals are derived. It is shown
that the general theory for the description of the macroscopic flow properties of the system demands 20
viscosity coefficients. Using thermodynamic arguments, one can show that these coefficients must fulfill
certain restrictions in terms of inequalities and also, from symmetry arguments, that a specific tilt angle
dependence can be assigned to them. With the Sm-C stress tensor as a starting point we discuss the con-
cept of viscous torques. We define the rotational viscosity of the system and write down the proper
equations governing the shear flow behavior for two different geometries. Using these equations we dis-
cuss the concept of flow alignment and define the effective viscosities of the system. We also show that in
most cases backflow (flow induced by director rotations), as well as transverse flow effects (flow or per-
meation perpendicular to the shear plane induced by the shear), is associated with the macroscopic flow.

PACS number(s): 61.30.Cz

I. INTRODUCTION

The discovery of the possibility of developing electro-
optical devices using ferroelectric smectic-C* liquid crys-
tals [1] has necessitated the need for a complete viscoelas-
tic theory for this system. An elastic theory for Sm-C
and Sm-C* liquid crystalline systems has already been
given by de Gennes [2]. This theory was later refined and
reformulated by several authors [3-6]. However, apart
from the paper by Martin, Parodi, and Pershan [7] pro-
viding a microscopic hydrodynamic theory of Sm-C
liquid crystals, papers concerning macroscopic flow are
very scarce in the literature [8,9]. Still, dynamical prob-
lems for Sm-C liquid crystals are most often treated by
the use of some ‘‘nematiclike” theory and not by a proper
smectic theory (for convenience we write Sm-C
throughout this paper, although most of the results de-
rived are also applicable to Sm-C* liquid crystals). The
aim of this paper is to provide such a theory. With the
paper by Leslie, Stewart, and Nakagawa [8] as a starting
point, we show how one can develop a coherent and
physically sound picture of the macroscopic flow proper-
ties of Sm-C liquid crystalline systems.

The outline of the paper is as follows. In Sec. II we
define the quantities necessary to describe the system
studied and also introduce the notations adopted in this
work. In Sec. III we then give a brief derivation and a
summary of the equations governing the flow behavior of
Sm-C liquid crystals, showing that the symmetry of the
system demands in the stress tensor 20 viscosity
coefficients as well as 9 elastic constants. Section IV
presents a classification of these coefficients and here it is
also proved that the form of the stress tensor implies that
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a specific tilt-angle dependence can be assigned to each of
these. In this work we restrict our study to the case for
which the smectic planes are’'assumed to remain fixed. In
order to fulfill this requirement, a torque of constraint
must be transmitted to the director via the smectic layers.
In Sec. V we discuss the way in which the symmetry of
the system affects the form that this countertorque can
adopt.

Sections VI and VII introduce the concept of a viscous
torque and show how this can be divided into two parts:
the rotational torque connected to the rotation of the ¢
director and the shearing torque, which is due to the
macroscopic flow of the system. In these two sections we
define the rotational viscosity of the system and also dis-
cuss the possibility of flow alignment for two different
flow geometries. Sections VIII and IX derive the expres-
sions of the torques that are due to elasticity and the ap-
plication of electric or magnetic fields, respectively. Sec-
tion X examines the balance of linear momentum and in-
troduces the effective viscosities for the two flow
geometries discussed. In this section it is shown that the
phenomenon of backflow is most likely to appear in the
system studied. In Sec. XII we show that the form of the
stress tensor implies that in most cases either a transverse
flow or a permeation of molecules between the smectic
layers is inevitably associated with the macroscopic flow
of the system.

Finally, in Sec. XIII a comparison between the Sm-C
and the nematic stress tensors is made. From this com-
parison we draw conclusions regarding some of the
viscosity coefficients entering the Sm-C theory. This sec-
tion also summarizes what can be stated concerning the
Sm-C viscosity coefficients from a theoretical point of
view.
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II. SMECTIC-C LIQUID CRYSTALS:
DEFINITIONS AND NOTATIONS

Figure 1 introduces the basic quantities needed to de-
scribe a Sm-C liquid crystal and sets the corresponding
notations unambiguously. We describe the normal to the
smectic layers by a unit vector a. Assuming that the sys-
tem studied is free from dislocations and of constant layer
thickness, the layer normal a must fulfill [10] the con-
straint

VXa=0. (2.1)

In this work we consider only systems for which the
smectic layers are planar with an orientation constant in
time. We choose the coordinate system in such a way
that the smectic planes are parallel to the xy plane and
the layer normal falls along the positive z axis, i.e., a=72,
and thus the constraint (2.1) is always automatically
fulfilled. The direction of the long molecular axes is
defined by a unit vector n, the director. The angle that
the director makes with the layer normal, “the tilt an-
gle,” is denoted by 6. Assuming that the system is not
studied in the immediate vicinity of the Sm-C-Sm-A4
phase transition temperature 7., one can assume 6 to be
constant [11], depending solely on the temperature of the
system. The projection of the director onto the smectic
planes is described by a unit vector ¢, commonly denoted
the c director. In order to describe the orientation of the
¢ director one introduces the phase angle ¢, which is the
angle between the c¢ director and the x axis, counting ¢
positive for a rotation of the ¢ director around the posi-
tive z axis. For mathematical convenience we also intro-
duce a third unit vector

b=aXc . (2.2)

SMECTIC C
LAYER

FIG. 1. Notations used in the present work. The average
molecular direction, the director, is given by a unit vector n
making an angle 0 with the layer normal a, which is taken to be
parallel to the z axis. The ¢ director, being a unit vector parallel
to the projection of the director onto the smectic planes (the xy
plane), is denoted by ¢ and is described by the phase angle ¢.
The unit vector b, which is also confined to lie within the smec-
tic planes, is defined by the relation b=aXc.
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For a chiral, ferroelectric Sm-C* liquid crystal of the (+)
type in the nomenclature of Clark and Lagerwall [12], the
unit vector b coincides with the polarization vector. We
also occasionally study the influence of applying an elec-
tric field over the system. When doing so, the field is as-
sumed to be applied parallel to the smectic layers, point-
ing in the y direction.

When studying the flow properties of the system, the
liquid crystal is considered to be incompressible and the
velocity field v is subject to the constraint

V-v=0. (2.3)

Furthermore, we neglect the possibility of transportation
of material between the smectic layers, thus assuming the
velocity field everywhere to be parallel to the smectic lay-
ers.

To solve the general viscoelastic problem one now has,
for a given set of boundary conditions and external
forces, to calculate the space and time dependence of the
layer normal, the ¢ director, and the velocity field. In the
particular case studied in this work (an incompressible,
isothermic system with constant tilt and fixed, planar
smectic layers), we thus want to calculate a one-
component c-director field ¢(r,z) and a two-component
velocity field v(r,¢)=uv,(r,¢)X+v,(r,2)§ for a given set of
external conditions. Demanding the smectic layers to
remain planar and fixed in space requires some external
torque to be transmitted to the system. This counter-
torque will be obtained as a by-product of the calcula-
tions.

III. GOVERNING EQUATIONS:
THE SMECTIC-C STRESS TENSOR

This section presents a brief summary of the continu-
um theory proposed recently by Leslie, Stewart, and
Nakagawa [8] for certain equilibrium and dynamic prob-
lems in Sm-C liquid crystals. In addition to the normal
assumption of incompressibility, their model is further
constrained in that it assumes that the layer thickness
remains constant and also that the tilt of the director
with respect to the layer normal remains fixed. These as-
sumptions appear to be reasonable for many problems, al-
though clearly too restrictive for others.

Given the assumption of incompressibility, their con-
tinuum theory essentially rests on two balance laws for
linear and angular momentum, namely,

pv;=F;+t;;, 3.1

F?Xt+8ijktkj +l’]’]=0’ (3.2)

where F and I' denote external body force and moment
per unit volume and ¢; and [;; the stress and the couple
stress tensors, respectively. Given the constraints, the
latter can be expressed as

Jw dw -~
t;=—pb; +Bp£pjkak,i_Eak,i_vwck,i+tij ,
(3.3)
_ w Jw 7
l;j=B,a,8;;—Bia; ey, |a, da, o 3cy,j Ty, 3.4)
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the pressure p arising from the assumed incompressibility and the vector B stemming from the layer constraint (3.1).
Furthermore, 't’ij and /;; denote dynamic contributions, while w is the elastic energy of the system given by [5]

w=1A4,,(b-VXc)P+14,(c:VXb)*+ 4,,(b-VXc)c-VXb)+1B (V-b)*+LB,(V-c)?

+1B,[L(b:VXb+c-VXc)+g P+ B 5(V-b)[L(b-VXb+c-VXc)]+C (V-c)(b-VXe)+Cy(V-c)c-VXb) ,

q being the wave vector of the pitch in the case we are
studying a Sm-C* system. It can be also shown [8] that

I;,=0, (3.6)

analogous to the case for a nematic liquid crystal.

To present the constitutive equations for the viscous
stress it is helpful to introduce initially the rate of strain
and vorticity tensors

D (3.7

Wi':%(vi,j—vj,i) (3.8)

— 1
=z ;+v;,),

and two vectors A and C related to the material time
derivatives of the unit vectors a and c by

;= uoD;; +wma,Dja;a;+u,(Dfa;+Dfa;)+pse,Dycic

(3.5)
l
4;=a;—Wyay , 3.9)
Ci=¢—Wycy . (3.10)
Also we find it convenient to employ the notations
Df=Dja; , (3.11)
Df=Dyc; . (3.12)

With these definitions Leslie, Stewart, and Nakagawa [8]
write

+A(4;a;+ Aja;)+ A (Cic; +Cie;)+Ase, Ay(a;c;+ajc;)+xy(Dfc; +Dje; +Dfa; +Dja;)

+ryla,Dj(a;c;+a;c;)+2a,Dja;a;]+k;3(c,Dy(a;c;+ajc;)+2a,Dcic; ]+ 7,(Cia; +Cja;)

t7(Ad;c;+ Ajc;)+273¢, Aya;a;+274c, 4 cic;

is the symmetric part of the stress tensor and

tj=A(Dja;—Dfa;)+Ay(Dfc;—Dfc;)+Ayc,D(a;c;—a

+As(Cie;—Cie;)+ Aee, A, (aic;—ajc;)+1(Dfc,—Dfc; )+ ry(Dfa;, — Dfa;)

+ma,Dj(a;c;—ajc;)+74c,D5a;c;—ajc;)+75(A;c;— A;e; +Cra;— Ciay)

is the antisymmetric part. Associated with the latter one
can introduce two vectors g° and g° such that

Eik ;=i @8k + €€ 8k (3.16)
and therefore
&'=—2(MD/+Asc;c, D+ Ay A; +Aecic, A,

+7,Df+73¢;0,D;)+74c;¢, Dy +75C;) (3.17)

and

8i=—2(ADf+AsC;+7,Df+7154;) . (3.18)
The viscous dissipation takes the form

To=1;D;—gA4,—gC; 20, (3.19)

which limits the choice of the viscous coefficients. The
above relationships are the most general isotropic expres-
sions that are linear in the rate of strain and the two vec-
tors A and C, invariant to the simultaneous change of
sign of the two quantities a and c, and finally satisfy On-
sager relations. Given the symmetry assumed, the above

=0+, (3.13)
where
+py(Dfc;+Djc;)+usc,Dy(a;c;+ajc;)
(3.14)
jci)+l4( A;a;— A;a;)
(3.15)

theory contains 20 viscous coefficients, which may seem
excessive. An alternative is to assume a different symme-
try with the theory invariant to independent changes of
sign in a and c, this reducing the number of viscous terms
to 12 as in a biaxial nematic liquid crystal, the terms with
coefficients 7; and «; being eliminated. However, we re-
ject this option because it leads to a theory in which there
would be no flow alignment in the geometry depicted in
Fig. 5; this is unacceptable because such a flow alignment
does occur.

A comparison of the above theory with an earlier one
by Martin, Parodi, and Pershan [7] is not easy given that
they are rather different both in their range of applicabili-
ty and in their formulation. The present theory is non-
linear in that the layers can be deformed in an arbitrary
finite manner as long as the equal spacing is maintained,
with the consequent changes in alignment not restricted
to small perturbations. Also it allows for nonlinear in-
teractions between alignment, layer orientation, and flow,
aspects that are essential for successful device modeling.
The earlier theory [7], however, is restricted to small per-
turbations of a uniformly aligned smectic in planar lay-
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ers, mainly motivated by an analysis of light scattering
experiments, and does not include any nonlinear effects.
For example, it cannot model flow alignment. Indeed, its
limitation to small disturbances of planar layers has rath-
er restricted interest in it, to the extent that very little by
way of analyses based on it have appeared in the litera-
ture over the past 20 years.

The formulations also differ in that the present theory
is based on principles of continuum mechanics that gen-
eralize concepts of linear and angular momentum em-
ployed in classical Newtonian mechanics and is essential-
ly an extension of the approach adopted by Leslie [13]
and Erickesen [14] in the derivation of their very success-
ful theory for nematic liquid crystals. In contrast, the
earlier linear theory appeals to principles embodying mi-
croscopic concepts and is somewhat dismissive of angular
momentum. However, where the comparison is straight-
forward, the two theories agree. The theory by Martin,
Parodi, and Pershan employs a symmetric stress tensor
dependent solely upon velocity gradients and contains
nine terms. If the above stress is so restricted, it too
reduces to nine terms. While some reduction of the
above general stress is possible in special cases by using
the equations for angular momentum to eliminate certain
terms, further comparison between the two theories is not
a simple matter given the differences in formulation. For
nematic theory it did prove possible to show that the two
approaches led to equivalent theories in the linear limit
[2] and ultimately this may prove possible for smectic
theory, but it is rather beyond the scope of the present
paper to attempt this here.

With the assumption that the smectic layers are held
fixed by some external constraint torque I'° and choosing
the layer normal a to point in the z direction, i.e., a=7%,
the torque equation (3.2) can, by adopting the notations

me= | Qe | _dw (3.20a)
aaij . aai
AN
me= | Qe | _dw (3.20b)
acij . ac[
i
be written as [8]
I‘im_f_’i;'——f}?z +Bz,x _‘Bx,z—-n;_'_c}’n;:o ’ (3213.)
F;Xt+%;‘z—a+ﬁz,y —ﬁy,z+ni_cxnf’::0 ’ (3.21b)
FEXt+i;lx Hi')‘:y—l—cxﬂ;—cyﬂi=0 : (3.21¢)

Equation (3.21) is the basic torque equation governing the
motion of the system to be employed in this work. The
physical interpretation of the terms in the equation is as
follows. The torque I'**' represents the external torque
applied to the system. In this work I'*** will represent the
torque associated with applying an electric (or magnetic)
field over the system. The 7} terms represent the viscous
torque I'’ exerted on the system, i.e.,

ry=7%—72 , (3.22a)
V=72 —72 (3.22b)

=7 —72, . (3.22¢)
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The elastic torque is given by

If=—1IIj +c,I15 , (3.23a)
re=Is—c, I, (3.23b)
rd=c, IS —c, IS . (3.23¢)

The II terms, appearing in Egs. (3.23a) and (3.23b), are
present because the system for a nonuniform ¢ director
might lower the total elastic energy by bending the smec-
tic layers. Thus a system with planar layers and a nonun-
iform c director can be unstable against perturbations in-
ducing a nonuniform layer normal a. Experiments in-
volving manipulations of c¢ suggest that the layer defor-
mations accompanying change or nonuniformity of ¢ are
unobservable, i.e., that the layers provide the required
torques with very little deformation. Given this, one can
expect I'? and I“;l to be small.

The unknown countertorque I'‘, needed to keep the
layers planar and fixed in space, is given by the Lagrang-
ian multiplier j3,

r; :Bz,x —Bx,z ’ (3.24a)
ry=B,,—B,. (3.24b)
:=0. (3.24¢)

We notice that the mathematical structure of Egs.
(3.2)-(3.4) implies that I'; =0, which will be of impor-
tance when solving the torque equation (3.21) later.

IV. TILT ANGLE DEPENDENCE
AND CLASSIFICATION OF THE VISCOSITY
COEFFICIENTS AND ELASTIC CONSTANTS

Equations (3.14) and (3.15) introduce altogether 20
viscosity coefficients needed to give a complete descrip-
tion of the dynamical properties of a Sm-C liquid crystal.
We notice that these coefficients can be classified to be-
long to one out of four groups. This classification scheme
is shown in Table I. First of all there is the pu, term,
which does not depend upon either a or ¢ and thus is the
isotropic part of the stress tensor. We then find the four
terms connected to the constants p,;, u,, A;, and A,.
These depend only on a and are independent of the ¢
director. Thus these four terms are present also in the
Sm- 4 phase where the ¢ director is absent and we denote
them as ‘“‘smectic- A-like” coefficients. The four terms
mentioned above, together with the isotropic p, term, are
those needed to describe the dynamical properties of the
Sm-A phase. The number of terms agrees with the five
terms given by Martin, Parodi, and Pershan [7] in their
hydrodynamic theory of the Sm-A4 phase. Furthermore,
there are four terms in the stress tensor, which depend
only on the c director. These are the terms involving the
coefficients A,, As, @3, and p,. The form of these terms
correspond to the way the four independent anisotropic
terms can be written in the nematic stress tensor [15] and
thus we denote these terms as ‘“nematiclike.” However,
we show later (cf. Sec. XIII) that some caution must be
taken when comparing these four coefficients with the
four independent anisotropic Leslie viscosities of nematic
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TABLE 1. Classification and tilt-angle dependence of the 20 Sm-C viscosity coefficients.
Isotropic Smectic- A-like Nematiclike Coupling Tilt dependence
Ho Histhas Ay Ag independent
g Aoy As HssAz, A6 &
U3 6*
K15K25,T15T2,T3,Ts 0
K3, T4 6°
liquid crystals. This is because the nematic stress tensor dependence of these constants can be written as
is expressed by employing n, while the Sm-C stress tensor —70 —70 =70 —7.0
is expressed in terms of ¢. Finally, there are the 11 terms TI— Y TaT 0 T3T T30, TsT 75U 4.22)
associated with the coefficients A3, Ag, w5, k1, Ky, K3, T, T, K| =R,0, K,=R,0 , .
T3, T4, and 75. These are the coupling terms involving a
as well as ¢ and do not have any counterpart in any other T =T, k=07, (4.2b)

theory.

The temperature dependence of the viscosity
coefficients discussed above does generally have two con-
tributions, one due directly to the tilt angle dependence
and the other to the usual temperature dependence of
condensed phase viscosities. If the system is in a not too
large temperature interval below the Sm-C —-Sm- A4 phase
transition temperature 7,, we can probably neglect, as a
fairly good approximation, the second of these two
effects. However, as the tilt angle changes dramatically
in the temperature interval of interest, we have to investi-
gate the first of the two effects in detail. Keeping the lay-
er normal a unchanged and at the same time changing
the tilt 6 to —8 and c to —c provides a symmetry opera-
tion of the system. As a consequence, the stress tensor
must be invariant under this operation. Thus we con-
clude that for all the terms in the stress tensor in which ¢
appears an odd number of times, the corresponding
coefficient must be odd in 6, while for the terms in which
c appears an even number of times the corresponding
coefficient must be even in 6. Furthermore, of the even
coefficients, ug, i1, 1y, A, and A4 are independent of the ¢
director and should remain also in the Sm- A4 phase where
the tilt is zero. Thus these coefficients should be 0 in-
dependent. Of the remaining seven terms that are con-
nected to coefficients that are even in 0
(Mg, Az, As, Ag, 35 1hgs Us), the p; term depends on the fourth
power of ¢ while the other six depend only on the second
power of c. Thus we expect the u; term to vanish faster
than the other six terms when the system approaches T,
and we can write down the tilt angle dependence of the
seven constants mentioned above as

7»2=)_»292, )\«3=X362, 7»521502, AG:}—\,GBZ 5

(4.1a)
1a=E48, ps=ps6,
1y =H36* (4.1b)
where the constants A; and [I; can be assumed to be only
weakly temperature dependent. Of the terms connected
to the coefficients that are odd in
O0(711,7T, T3, T4, T5,K1, Ky, k3) some depend linearly on ¢ while
some depend on the third power of c. By the same
reasoning as above we will assume that the tilt angle

where again the temperature dependence of the constants
7; and K; is assumed to be weak. In Table I we have sum-
marized the classification and the tilt angle dependence of
the viscosity coefficients as introduced above.

The elastic constants introduced by Eq. (3.5) can be di-
vided [5] into three groups. The A; constants are related
to deformations of the layer normal a while the B; con-
stants are related to deformations of the ¢ director. The
constants C; represent cross-coupling terms appearing
when a and ¢ vary simultaneously. By employing the
same symmetry arguments as above, Carlsson, Stewart,
and Leslie [5] have shown that the tilt angle dependence
of the elastic constants can be written as

A=K+ A4,0%, A, =K+ 4,6,

A, =—K+4,,6°, (4.3a)
B,=B,0*, B,=B,0* B;=B,6* B,;=B;;6°, (4.3b)
c,=C,6, C,=C,0, (4.3¢)

where the constants K, 4;,B;, and C; can be assumed to
be only weakly temperature dependent.

V. EQUATION OF MOTION
FOR THE ¢ DIRECTOR AND CALCULATION
OF THE TORQUE OF CONSTRAINT

In this work we study the dynamics of a Sm-C system
when being subject to some external driving force. The
basic assumption is that the smectic layers are held fixed
in space during the motion. In order to fulfill this con-
straint we show below that some external countertorque
I'¢ has to be exerted on the director. To understand the
nature of this countertorque, we study Fig. 2. A torque
I’'=T7Z acting on the system causes a rotation w, of the
director around the Z axis. Such a torque brings the
director around the smectic cone, causing the ¢ director
to rotate, but leaves the layer normal unchanged [Fig.
2(a)]. Figure 2(b) depicts what happens if an unbalanced
torque I'=T'b is acting on the director. In this case a ro-
tation @, of the director around the b axis is the conse-
quence. Such a rotation changes the tilt of the director
with respect to the layer normal. Assuming the tilt to
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remain constant, instead the entire smectic layer starts
rotating around the b axis in order to preserve the tilt.
Having assumed the smectic layers to remain fixed, some
external constraint countertorque I'°=T5b must thus be
exerted on the system, balancing the torque '=Ib. By
the same reasoning one concludes from Fig. 2(c) that any
unbalanced torque I' =T'c causes a rotation w, of the lay-
er normal around the c axis in order to preserve the tilt.
Thus a countertorque I'°=T"¢c is needed in order to bal-
ance any torque I'=TI'c acting on the system. In Fig. 1
the coordinates are introduced in such a way that

¢, =cosp, c,=singp, c,=0, (5.1)
b,= —sin$, b,=cosp, b,=0 (5.2)

and thus the most general countertorque acting on the
system can be written

(a)
/
Lo

=

(b)

/," I, >8as, = 0 /

FIG. 2. Stabilizing countertorque needed to keep the smectic
layers fixed in a Sm-C liquid crystal with constant tilt 6. (a) A
torque I', acts to rotate the director around the smectic cone.
(b) A torque I';, on the other hand, will, for constant 0, rotate
the smectic layers around b. (c) In the same manner a torque T,
will rotate the smectic layers around ¢ Thus, if the smectic lay-
ers are assumed to be fixed, an external countertorque is needed
to balance I'y and T
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r*=r{b+Tic=(I¢ cos¢ — I sind)X

+(T¢ sing+T'§ cosg)y (5.3)

This form of the countertorque agrees with the result of
Eq. (3.24), showing that the mathematical structure of
the dynamic equation demands I'S =0.

Finally, we write down the torque equation (3.21) as we
use it throughout this work. The dynamics of the ¢ direc-
tor is given by Eq. (3.21c¢), which can be written

ret+re+ri=o, (5.4)

where the three torques entering this equation are the z
components of the external torque, the viscous torque
[Eq. (3.22)], and the elastic torque [Eq. (3.23)], respective-
ly. Once Eq. (5.4) is solved, ¢(r,t) is known. Substitut-
ing ¢(r,t) into Egs. (3.21a) and (3.21b) allows the com-
ponents of the countertorque I'5 and I'}, needed to
preserve the orientation of the smectic layers, to be calcu-
lated. As we prefer to express the countertorque in terms
of its projections along b and c, we use Eqgs. (5.1) and (5.2)
to rewrite I'° as

'y =—T% sing +TI'j cosé
=(F&+T% +T)sing — (C+TY + T )cose |

(5.5a)
=I5 cos¢+T] sing
=— (P& +TY +T¢)cosp — (L +T% +T'¢)sing ,
(5.5b)

where the last part of the equalities in the equations
stems from the fact [cf. Egs. (3.21)] that
[é=—I™—TI?—TI¢ for i =x,y. Apart from the torque
equations (5.4) and (5.5), the equation for the balance of
linear momentum (3.1) also needs to be solved for a com-
plete treatment of the dynamical behavior of the system.

VI. ROTATIONAL TORQUE
AND ROTATIONAL VISCOSITIES

Neglecting the inertia of the system, the balance law
for angular momentum is given by Eq. (3.2). As dis-
cussed in Secs. IIT and V, this equation can be interpreted
as a balance of torque equation. The viscous torque I'’
can be divided into two parts

T}=T{+T]=¢; T - (6.1)
In Eq. (6.1) I'¥ is the shearing torque, i.e., the torque act-
ing on the director due to velocity gradients, while I'” is
the rotational torque, i.e., the torque that appear whenev-
er the director is rotating.

In this section we derive the expression for the Sm-C
rotational torque and with this as a starting point define
the rotational viscosity of the system. The rotational
torque is given by Eq. (6.1) if in the expression of the
stress tensor (3.15) one retains only the terms that remain
in the absence of velocity gradients. We also reject any
terms proportional to a as the system studied assumes
that the smectic layers are fixed. The remaining part of
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the stress tensor can in this case be written as

G =As(éje;—¢ic;) +15(¢ia;—¢ia5) . (6.2)

Recalling that the layer normal is assumed to point in the
z direction, i.e., a,=1, and employing Eq. (5.1) now al-
lows the calculation of the rotational torque

[} =2rs¢cosd , (6.32)
I =275¢sing , (6.3b)
I=—2A\s¢ . (6.3c)

From Eq. (6.3c) one can define the rotational viscosity y
associated with the motion of the ¢ director as

Y=2Xs . (6.4)

If the rotational torque shall be a dissipative one, the in-
equality

As>0 (6.5)

must hold, a result that also can be verified by demanding
that the entropy production of the system, given by Egs.
(3.17)-(3.19),

To =2As¢;¢; =2Asp” (6.6)

be positive.

Equations (6.3) give the expression of the rotational
torque acting on the director when this is rotating around
the smectic cone at an angular velocity ¢. The com-
ponent I'] is the one that balances the external driving
torque maintaining the motion. However, there are also
nonzero components I'; and I'j. This means that pro-
vided the smectic layers remain planar and fixed in space,
an external countertorque must be exerted on the system.
The rotational part of this countertorque I'“" is calculated
from Egs. (5.5) and (6.3) as

re=o,
= 275¢ .

c

(6.7a)
(6.7b)

From Eq. (6.7b) we can determine the sign of the viscosi-
ty coefficients 75. Let a molecule rotate along the smectic
cone with an angular velocity ¢ >0. The drag force F?
acting on the molecule in this case is along —b, i.e.,
F?= — F%, F? being proportional to ¢. The drag torque
acting on the molecule is the rotational torque, which is
proportional to rXF?~(csinf+% cosf) X (—¢b)
=¢(ccosf—2Zsind). This proves the z component of the
rotational torque to be negative for positive ¢, a result al-
ready recognized above. However, one also sees that
I',>0 for $>0. As I',=—TY, one concludes from Eq.
(6.7b) that the following inequality must be valid:

75>0 . (6.8)

VII. SHEARING TORQUE
AND FLOW ALIGNMENT ANGLES

We now calculate the shearing torque acting on the
director if velocity gradients are present in the system.
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The setup of the shear flow is shown in Fig. 3. Neglect-
ing permeation of molecules between the layers, the ve-
locity vector must be parallel to the smectic planes,
which are chosen to be parallel to the xy plane. Also
neglecting the possibility of transverse flow, which will be
discussed in Sec. XII, one can without loss of generality
assume the velocity field to be of the form

v, =v(y,z), v,=0, v,=0. (7.1)

From Fig. 3 one sees that the system permits two
different types of shear, either between the planes
(dv /dz+0) or within the planes (dv /dy#0). We intro-
duce the shorthand notations v, and v, for the local shear
rate in these two cases, respectively. In the case of steady
shear flow (i.e., é;,=0, d¢;=0) the nonzero components of
the quantities (3.7)—(3.12) entering the stress tensor are
calculated by using Egs. (6.3) and (5.1),

nyzév):’ szz%vzl’ ‘Dyx:%v}:’ sz:%vzl ’ (7.2)
Wy =tv, We=lv, We=—ly, W,=—4,
(7.3)
sz%l)z' s (7.4)
D;=isingv;, Dj=1cos¢v,, D;=1cosdv, , (7.5)
A, =—1v,, (7.6)
C,=—3singv;, C,=jcospv,, C,=;cosdv, . (7.7

The Cartesian components of the shearing torque calcu-
lated from Eqgs. (3.15), (3.22), and (7.2)-(7.7) take the
form

IS =cos¢(7,+ 75+ 27, sin’p M

+sing cosd(A;—A,—As— Ay, , (7.8a)
Iy =sing(7s—71,—27,4 cos?¢ v,

+ A=A+ (A — Ay +As+Ag)cosZp v, , (7.8b)
IS =[A,(sin’p —cos’¢) —As]v, +sing(ry—7s)v, . (7.8¢)

From Eqgs. (5.5), (7.8a), and (7.8b) the b and the ¢ com-
ponents of the shearing part of the countertorque are now

X
S S S S S /
—> v = Vv(y,2z) X /
S S S S
FIG. 3. Definition of coordinates for calculating the shearing
torque. The smectic layers are parallel to the xy plane and the
layer normal is pointing in the z direction. The velocity field is
parallel to the smectic layers (here the x direction is chosen) and
we assume that the velocity gradient can be both in the y direc-

tion (shear within the layers) as well as in the z direction (shear
between the layers).
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given by
[5=2(7,+74)sing cosgv,
+ (A +A3—A,—Ay—As—Ag)cospv, ,
% =[,(sin’¢—cos’p) — 75 Joy + (A, —Ay)singv; .

(7.9a)
(7.9b)

From Egs. (7.9) one concludes that generally, when a
Sm-C liquid crystal is subject to shear, an external stabil-
izing torque has to be applied to the system in order to
keep the smectic layers fixed.

With Eq. (7.8¢c) as a starting point, we discuss the pos-
sibility of flow alignment in the system. We treat the two
cases of shear separately, starting with the case for which
the shear is within the smectic planes. Such a shear is
realized with a sample in the bookshelf geometry, allow-
ing one of the glass plates to move with respect to the
other along the smectic layers. This is the situation de-
picted in Fig. 4 provided the bounding plates are parallel
to the xz plane. Setting v, =0 in Eq. (7.8c), the z com-

W: SHEAR WITHIN THE PLANES

y/]\&X

z

FIG. 4. Flow alignment when the shear is within the smectic

planes. In this case we assume that the liquid crystal is confined

between two glass plates parallel to the xz plane, one of which is

moving in the x direction with respect to the other. The circles

represent a top view of the smectic cone and the points denote

the equilibriums of the ¢ director under the shear flow. We have

denoted these points by S (stable equilibrium implies flow align-
ment) and U (unstable equilibrium), respectively.
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ponent of the shearing torque vanishes for an angle ¢,
given by

As

cos2¢py= — EWR (7.10)
2

Thus flow alignment is possible whenever the relation
As <A, (7.11)

is valid (we know [cf. Eq. (6.5)] that A5 must be positive).
In order to examine the stability of the flow alignment
angles given by Eq. (7.10) one must write down the com-
plete torque equation I') +I'} =0. From Egs. (6.3c) and
(7.8c) one has

2As¢p+(As+A,cos2¢)v, =0 . (7.12)

Allowing a small perturbation 8 of the ¢ director with
respect to the flow alignment angle ¢,, i.e., by writing
¢=¢,+B, one can expand Eq. (7.12) for small 3 and by
using Eq. (7.10) write

. A
B=v, sin2¢07f/3 . (7.13)
As the quantity As is a rotational viscosity always being
positive, the stability of the flow alignment demands the
quantity A,sin2¢, to be negative. Thus there are two pos-
sibilities for the stability of the flow alignment (cf. Fig. 4).

(i) A, <0. In this case cos2¢,> 0 [cf. Eq. (7.10)] and the
solutions for which sin2¢,>0 are the stable ones. This
means that the four solutions of ¢, given by Eq. (7.10)
occur in pairs, centered around the x axis, and the two
solutions in the first and third quadrants are stable.

(ii) A,>0. In this case cos2¢,<0 [cf. Eq. (7.10)] and
the solutions for which sin2¢, <0 are the stable ones.
This means that the four solutions of ¢, given by Eq.
(7.10) occur in pairs, centered around the y axis, and the
two solutions in the second and fourth quadrants will be
stable.

Presently nothing is known about the values and signs
of the Sm-C viscosity coefficients apart from some ine-
qualities that thermodynamics require. The coefficient A,
does not enter any of these inequalities, but we argue that
case (i) above is the case to which the system studied
most likely belongs. For nematics there is a similar situa-
tion where the stable flow alignment belongs to one of
two cases depending [16] on whether the system consists
of rodlike or disklike molecules. By similar reasoning we
believe that the system studied, if flow alignment occurs,
should belong to case (i), which is the one resembling the
behavior of a rodlike nematic system exhibiting flow
alignment. Thus we believe that the coefficient A, is like-
ly to be negative. Further arguments for this opinion are
presented in Sec. XIII.

We now turn attention to the case for which the shear
is between the smectic planes. Such a shear is realized if
the smectic layers are aligned parallel to the bounding
glass plates, which thus are parallel to the xy plane using
the geometry of Fig. 5. By setting v, =0 in Eq. (7.8¢c), the
z component of the shearing torque vanishes if ¢,=0 or
¢o=m. Thus flow alignment is always possible in this
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B: SHEAR BETWEEN THE PLANES

T5> Ty T5< Ty
Y Y
X X
_—>

X

FIG. 5. Flow alignment when the shear is between the smec-
tic planes. In this case we assume that the liquid crystal is
confined between two glass plates parallel to the xy plane, one of
which is moving in the x direction with respect to the other.
The circles represent a top view of the smectic cone and the
points denote the equilibriums of the ¢ director under the shear
flow. We have denoted these points by S (stable equilibrium im-
plies flow alignment) and U (unstable equilibrium), respectively.

case. To examine the stability of the two flow alignment
angles one must write down the torque equation
I'’+TI;=0, which, using the expressions (6.3c) and
(7.8c), can be reformulated as

T1—

o= 3 singv, . (7.14)
From this equation one concludes that the solution ¢=0
is stable if 75> 7, while the solution ¢ = is stable if this
inequality is reversed. Again, employing the knowledge
of the behavior of rodlike nematic liquid crystals, we
favor the solution ¢=0 to be the stable one and thus sug-
gest that the inequality

s> T (7.15)

holds.

One of the few shear flow experiments performed with
a Sm-C* liquid crystalline system reported in the litera-
ture is presented in a paper by Pieranski, Guyon, and
Keller [17]. In this work it is demonstrated how shear
between the layers unwinds the helix of the system due to
flow alignment for which the ¢ director becomes parallel
to the flow direction. This corresponds to the solution
¢=0 in Fig. 5 and provides further support for the in-
equality (7.15).

VIII. ELASTIC TORQUE

We now evaluate the expression for the elastic torque
given by Egs. (3.23). Assuming the smectic layers to be
planar (a=%), only the B; terms contribute to the elastic
free-energy density (3.5) which, assuming we allow for
gradients of ¢ in the y and the z directions only, can be
written as

w ZTBICJ%,,V +%B2Cyz,y +%B3[Cycx,z _Cxcy,z +q ]2
(8.1)

FTB3(cye, 0, —CxCy 05 ) -

Substituting the ansatz (5.1) for c¢ into this expression
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gives, after some calculations, the z component of the
elastic torque as

I'Y=(B, sin’$+ B, cos’$)¢, + (B, — B, )sin2¢¢,
+ By, +B15(2singg), +cosdd,bL) .

As our main objective is to study the behavior of the ¢
director, we do not explicitly evaluate the expressions
(3.23a) and (3.23b) for I'? and F;l [a calculation that must
be performed with the complete expression (3.5) of the
elastic free-energy density].

Wiring down the components of the elastic counter-
torque along b and ¢ we get, from Egs. (3.23a), (3.23b),
and (5.5),

I—w[,;el =—( Hi COS¢ + H; sin¢ )+ H; s
erlz _Hi sin¢+H; COS¢ .

(8.2)

(8.3a)
(8.3b)

Although the elastic energy w has an implicit 6 depen-
dence through the scaling properties (4.3b) of the elastic
constants, the theory does not consider any gradients of
6. Because of this the components I'{! and T'¢?! lack
terms that one would expect to be present as a result of
derivatives of the elastic energy with respect to 6.

IX. TORQUE FROM ELECTRIC
AND MAGNETIC FIELDS

In this section the torque acting on the director when
an electric (or magnetic) field is applied over the system is
calculated. We study the case when the field is parallel to
the smectic layers, assuming without loss of generality
that the field is applied in the y direction, according to
Fig. 1,

E=EY . 9.1)

If the system we study is chiral, the response to an elec-
tric field is twofold: the torque exerted on the director
exhibits both a linear (ferroelectric) part and a quadratic
(dielectric) part with respect to the field strength. We
treat these two cases separately below.

A. Ferroelectric torque

A Sm-C* liquid crystal exhibits a spontaneous polar-
ization P, which for a (+) compound [12] points in the b
direction, b being defined by Eq. (2.2),

P=Pyb, 9.2)

P, being the magnitude of the spontaneous polarization.
The ferroelectric torque I'/ due to the interaction be-
tween the field and the polarization can be written as

I=PXE, 9.3)

which by the use of Egs. (5.2) and (9.1)—(9.3) can be writ-

ten
/= —P,E singz , 9.4)

¢ being the angle between the polarization vector and the
field. As the polarization vector always is confined
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within the smectic layers, it is obvious that an electric
field, also being confined within the smectic layers, has no
tendency of bringing the polarization out of these. Thus
no countertorque is exerted on the system in this case,
i.e., we expect I' {ZI‘ )f, =0, in accordance with what is
observed from Eq. (9.4).

B. Dielectric torque

Neglecting dielectric biaxiality, the dielectric part "¢ of
the torque due to the field is calculated as [2]
r<=si-BaxE), 9.5

E being a unit vector parallel to the electric field while
the director 1 is given by

fi=ZX sinf cosd + ¥ sinf sing +2Z cosf , (9.6)
and & is the coupling coefficient
5=¢€,€,E? . ©.7)

In this expression €, is the dielectric anisotropy of the
system and €, the dielectric permittivity of free space.
From Eqgs. (9.1), (9.5), and (9.6), the dielectric torque is
calculated as

I'{ =—35sin6 cosfsing , (9.8a)
re=o, (9.8b)
¢ =8 sin’0 sing cos¢ . (9.8¢)

It is obvious that in this case the direction of the director
is not compatible with that of the electric field, because
the equilibrium of the director is either parallel (6 >0) or
perpendicular (6 <0) to the field. Thus a countertorque
I'°“ must be supported to the system in order to keep the
smectic layers in place,

I'5¢= —8sin6 cosO sin’¢ , (9.9a)

I'¢€=25 sinb cosO sing cos¢ . (9.9b)

If instead a magnetic field is applied over the system, &
has to be replaced by 828"t given by
J

7— @[ As+ Ay(cos?p—sing)]

T. CARLSSON, F. M. LESLIE, AND N. A. CLARK 51
Smagnetic= _X_“_B2 (9.10)
Ho

B being the magnetic field strength, ¥, the magnetic an-
isotropy of the system, and p, the permeability of free
space. Thus the expressions derived in this section cover
also the case when a magnetic field is applied to the sys-
tem

X. BALANCE OF LINEAR MOMENTUM:
EFFECTIVE VISCOSITIES AND BACKFLOW

In this section we write down the equation for balance
of linear momentum in shear flow. This is done for both
the flow geometries discussed in the preceding section.
Confining the system between two parallel glass plates, ei-
ther in the bookshelf geometry or with the smectic layers
parallel to the bounding plates, we now assume that one
plate is moving with respect to the other under the
influence of a force 7 (per unit area) acting on the moving
plate. These two situations are depicted in Fig. 6. The
equations obtained are used to discuss two items, the
effective viscosities of the system, a discussion that pro-
vides some additional inequalities for the viscosity
coefficients, and the concept of backflow. We derive the
equations for the two geometries at the same time and la-
bel the equations by a W (shear within the planes [Fig.
6(a)], v,70) and B (shear between the planes [Fig. 6(b)],
v,70), respectively. Neglecting the inertia of the system
and assuming that no external body forces F; are present,
the equation for balance of linear momentum (3.1)
reduces to

w: 7,,=0, (10.1a)

B: 7,,,=0. (10.1b)
These equations can be integrated to read

W: 7,=7, (10.2a)

B: 7,=7, (10.2b)

where the integration constant 7 is the force per unit area
applied to the moving plate. The stress tensor
(3.13)—(3.15), together with Egs. (5.1) and (7.2)-(7.7),
now gives

T4+ (7,—75) sing

L po+ g+ As+2u, sin’ cos’p+ 24,(cos’p —sin’p)]

(10.3a)

These equations can be written in a more condensed form

T— [ As+A,(cos?p —sin’p)]

W: v/ =
v, 2, (0.0) , (10.4a)
,_ TH(r—75)$sing
v, 25 (0.0) , (10.4b)

Lo+, —2h + Ay + (g +ps+2h, —2A3+ As+Ag)cos’p]

(10.3b)

f

where gy and g are implicitly 6 dependent through the
6 dependence (4.1)and (4.2) of the viscosity coefficients.
If one performs a shear flow experiment, keeping the ¢
director fixed, e.g., by applying a strong enough electric
or magnetic field in a suitable direction, the quantity
g;(0,¢) gives the ratio of the driving force per unit area
and the corresponding shear rate. Thus this quantity
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(a) (b)

W: SHEAR WITHIN B: SHEAR BETWEEN
THE PLANES THE PLANES

T

/ v =v(y)X

V/M)x Zw

z X

FIG. 6. Shear flow of a smectic liquid crystal (a) in the
bookshelf geometry and (b) if the smectic layers are parallel to
the bounding glass plates. The lower plate is at rest while the
upper one is moving in the x direction under the influence of a
force that has the magnitude 7 per unit area.

represents the effective viscosity of the system, which in
the two cases can be written

W: gy (0,8)=1[po+p,+As+2u;sin’g cos’p
+2A,(cos’p—sin?p)] ,
B: gp(0,0)=1[po+u,—2A,+A,

+ (gt ps+22, =203+ As+Ag)cos?d] .
(10.5b)

(10.5a)

By demanding the effective viscosity to be positive
definite, it is possible to derive a number of inequalities
that the viscosity coefficients must fulfill. The exact ap-
pearance of these inequalities depend on the signs of
some coefficients of which we lack knowledge and for
that reason the derivation of all possible inequalities is a
rather involved task. Thus we are content to write down
some of the more obvious inequalities that can be derived
from Egs. (10.5),

to>0, (10.6a)
HoFps+As—2(A,]0 >0, (10.6b)
ot g tAs+iu,>0, (10.6¢)
Wotu,—2A+A,>0, (10.6d)

to+ iy —2A  + Ayt g+ s +2h,—2A;+As A >0 .
(10.6¢)

Finally, we make a short remark concerning the
phenomenon of backflow. From Egs. (10.4) one con-
cludes that whenever the ¢ director is rotating, a nonzero
velocity gradient develops as a consequence of this rota-
tion. As can be seen from the structure of these equa-
tions, this coupling can never be neglected and thus a
correct treatment of all dynamical problems for Sm-C
liquid crystals must always take backflow into account to
be complete. The influence of backflow on the switching
dynamics of a ferroelectric Sm-C* liquid crystal in the
bookshelf geometry is presently being studied and the
governing equations of the system has been solved analyt-
ically as well as numerically [18,19]. Of course, as long as
the relevant viscosity coefficients are not known, one can-
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not make any statements regarding how important the in-
corporation of backflow in the analysis is likely to prove
to be in the end.

XI. THE COMPLETE TORQUE EQUATIONS
GOVERNING SHEAR FLOW

We now summarize the results from the previous sec-
tions by writing down the complete torque equations
governing the shear flow of the system for both the flow
geometries depicted in Fig. 6, still neglecting the possibil-
ity of transverse flow, the effects of which are discussed in
Sec. XII. The general torque equation governing the
shear flow of the system is given by
4+ T+ D+ T4+ T/+r€=0. From Egs. (6.3), (6.7),
(7.8), (7.9), (8.1), (8.2), (9.4), (9.8), and (9.9) one obtains,
for the case of bookshelf geometry,

W: T§=2(r,+74)sin¢ cosév,

— & sinf cos@ sin®¢p+ ¢, (11.1a)
¢ = —275¢+[7,(sin’¢ —cos’d) —7s]v,
+ 8 sinf cos@ sing cosp+ Tt | (11.1b)

—2As¢+[A,(sin*$—cos’p) — As]v,
— P, E sing+ 8 sin?0 sing cos¢

+(B,sin’p+ B, cos’p)d), + L(B, — B, )sin2¢¢, =0 ,
(11.1¢)

while for the case when the layers are parallel to the
bounding plates open obtains

B: T'{=(A;+A;—A,—A,—As—Ag)cosdv,

—8sinf cos@ sin’p+ 5!, (11.2a)
[¢=—275¢+ (A, —A,)singv,
+8 sin6 cosd sing cos¢p+ T | (11.2b)
—2As¢ +sing(r, —75)v,
—P,E sing + 8 sin’0 sing cosp+ B3¢, =0, (11.2¢)

where the expressions for the elastic countertorque are
given by Egs. (8.3). As one normally is interested in the
tilt angle dependence of the behavior of the system, we
also employ the scaling relations (4.1)—(4.3) to obtain the
scaled versions of Eq. (11.1) and (11.2):

W: T§=[2(7,+7,6%)sing cospv, —8 sin?p10+ T,
(11.3a)
re={—27¢+ [?z(sin2¢—cosz¢)—7r'5]v;
+8sing cos¢}O+T<!
—2X5¢p + [ R, (sin’¢p—cos’p) —Xs]v;

(11.3b)

- %E— sing + & sing cos¢

+(B, sin’p+ B, cos’$)g., + L(B, — B, sin2¢4), =0 ,
(11.3¢c)
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B: T{=[A—A,+(X;—A,
—86sin’p+T (11.4a)

[¢=—27,0¢+ (A, — A, )singv, +80 sing cos¢+ ¢ |
(11.4b)

—As—Xg)0*cosdv,

TWTTs .,
singv,

—2%.+
s¢ 7

~ % sing+ 8 sing cosg+ By =0, (11.4c)

where the scaling relations (4.3) have to be applied to the
]

7— [ A5+ Ay(cos’p—sin’p)]6?
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I'¢®! terms once these have been evaluated. In Egs. (11.3)
and (11.4) the fact that the spontaneous polarization P is
approximately proportional to the tilt [20] is also used,
i.e., we introduce a weakly temperature-dependent quan-
tity P according to

P,=P0 . (11.5)
Each of these sets of equations is now to be solved togeth-
er with the relevant of the two balance of linear momen-
tum equations (10.3), depending upon which flow
geometry is being studied. For completeness we also
write down the scaled versions these equations,

Lo+ [Bst+As+2R,(cos’p —sin’$) |6%+ 2[5 sin’¢ cos’p0*}

7+ (F,—75)0¢ sing

> (11.6a)

oty —2h + A+ (I +Ts+2X,—2X,+ A5+ 16)0% cos’]

The above equations are the equations governing the
shear flow of Sm-C liquid crystals under the assumption
that transverse flow is negligible and that the smectic lay-
ers remain planar and fixed. These provide a straightfor-
ward way of examining the flow properties of the system.
Depending upon which of the geometries of the flow is
under consideration, one of the two pairs of equations
(11.3c) and (11.6a) or (11.4c) and (11.6b) gives the equa-
tions to use for calculating the time and space depen-
dence of the ¢ director and the velocity field. Once these
equations have been solved, the remaining equations
(11.3a) and (11.3b) or (11.4a) and (11.4b) are immediately
used to calculate the countertorque required to keep the
smectic layers fixed.

XII. TRANSVERSE FLOW EFFECTS

It is well known from the study [21] of uniaxial nemat-
ic liquid crystals that in many cases a transverse flow can
be induced in the system. This section investigates under
which circumstances similar effects appear in the shear
flow of Sm-C liquid cystals. Starting with the case when
the shear is within the smectic planes [Fig. 6(a)] it is obvi-
ous that our model does not permit transverse flow, as it
only allows for a velocity field that is parallel to the smec-
tic layers. Nevertheless, we write down the z component
of the balance of linear momentum equation (3.1) to ob-
tain

- op _

zy’y_g—o .
Studying the steady state (i.e., $=0), Egs. (7.2)-(7.7)
with v, =0, together with Egs. (3.13)—(3.15), (4.1), and
(4.2), now give

op _1d ., _  _  _

E——z'g;{vy[l(1+’rl+72+7'5

(12.1)

+2(K;+7,)0%sin’¢p 0 cosp} . (12.2)

(11.6b)

This equation shows that whenever the c director is
pointing in a direction other than ¢==*7/2, a transverse
pressure gradient, perpendicular to the smectic layers, de-
velops as shown in Fig. 7(a). This transverse pressure
gradient is probably the driving force of permeation of
molecules between the layers. However, as our model
does not permit such a motion, we do not take the discus-
sion of this effect any further.

Studying the flow geometry of Fig. 6(b), i.e., when the
shear is between the layers, one must, when allowing for
transverse flow, consider a velocity field v(z) of the form

v, =v(z), v,=ulz), v,=0. (12.3)
(a) (b)
W: SHEAR WITHIN B: SHEAR BETWEEN
THE PLANES THE PLANES
T
@)y

b L e
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FIG. 7. (a) Transverse flow effects. When shearing the sys-
tem in the bookshelf geometry a transverse pressure gradient
dp /dz will generally develop. This transverse pressure gradient
will force the molecules to hop between the layers and is the
driving force of a permeation current Jp ~9dp/dz. The two
filled circles on the smectic cone represents the positions of the ¢
director for which permeation will not occur. In (b) the shear
takes place between the layers. Here a nonzero shearing rate
dv, /dz will induce a transverse shear dv, /dz unless the c direc-
tor is either parallel or perpendicular to the primary velocity of
the liquid. These positions of the ¢ director are indicated by the
filled circles on the smectic cone.
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The x and the y components of Eq. (3.1) can, in the ab-
sence of external body forces, be written

Ly, =0, 1,,=0.

(12.4)
By integrating these equations, assuming the driving
force 7 to be applied in the x direction, one obtains

J

2X3y—By—s—2h,—As—Aq
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L=, t,=0.

(12.5)

Assuming ¢ =0, the quantities given by Egs. (7.2)-(7.7)
will now include additional terms proportional to the
transverse shear rate u,. Substituting these more general
expressions into the stress tensor (3.13)-(3.15) and em-
ploying the scaling relations (4.1) and (4.2) of the viscosi-
ty coefficients, one derives from the second of Egs. (12.5)

u,=v,

We notice that the denominator of the expression on the
right-hand side of this equation is an effective viscosity
similar to the one defined by Eq. (10.5b). Thus this quan-
tity is always positive definite. From Eq. (12.6) one thus
concludes that whenever the ¢ director does not point in
a direction parallel or perpendicular to the moving plate,
a transverse flow is inevitably induced [cf. Fig. 7(b)]. This
transverse flow is associated with a torque that, if the
switching dynamics of the ¢ director is being studied, has
to be added to the torque equation (11.2c¢). Finally, we
note that for the flow geometry under consideration, the
flow alignment angles are given by ¢=0 and 7. Thus
these values are not affected by the presence of transverse
flow. It might be possible that the stability of the flow
alignment angles could be changed by taking the corre-
sponding torque into account, but such an analysis is
beyond the scope of this discussion.

XIII. COMPARISON WITH RODLIKE
UNIAXIAL NEMATICS

In Sec. III we examined the stress tensor and found
that it is possible to divide the viscosity coefficients into
four different categories (Table I). At the present stage,
little can be stated regarding the values and even the
signs of these coefficients because of the lack of experi-
mental information. However, by thermodynamic
reasoning, we were able, in Secs. VI and X, to derive
J

ij
+%’;/2(Njn, +N,nj )+%7/2(D]n1 _D,nj) .

Before comparing the two stress tensors (13.1) and (13.5)
one must observe that while in the part of the Sm-C stress
tensor studied the terms are expressed using the ¢ direc-
tor, the nematic stress tensor is expressed by using the
director n. Figure 8 depicts a situation in which it is as-
sumed that the director rotates along the cone, the axis of
which is taken to be z axis. The director can be either the
nematic director or the director of a Sm-C liquid crystal
with tilt 6. The basic assumption is that the two stress
tensors shall, as far as possible, have the same physical
meaning in the two cases. We now see that if the nematic
stress tensor is to be expressed in terms of c, one must

F oty =20 Ay ([ Es+ 28, — 2K, + K5+ X )62 sinZe

6% sing cos¢ . (12.6)

[

some inequalities that the viscosity coefficients of the
Sm-C phase must fulfill. In this section we show that, by
comparing the Sm-C and nematic stress tensors, one can
make some additional statements regarding the nematic-
like viscosity coefficients fis, fis, Ay, and As.

The nematiclike part of the Sm-C stress tensor
(3.13)-(3.15), i.e., the part solely depending on the c
director, is given by
et e, )=poDy; +psc, Dcic; +pg(Dfc; +Dfe;)

+As(Cic; —Cic;)+A,(Cic; +Cje;)
+Ay(Djc;—Dfc;) , (13.1)

where also, for completeness, the isotropic term p,D;; has
been retained. The expression for the nematic stress ten-
sor [15] is

™, )= a Dy, +ayn, D,ynin;+ Has+ag)(Din;+Ding )+ Ly (Njn,—N;n;)

() =ayngn, Dy, nin;+ayNin;+asNn; +a,D;
+asDyngn;+agDynen; . (13.2)
By introducing the notations
Dy=n,Dy,, vi=a3—a,, y,=azta, (13.3)
and by employing the Parodi relation [22]
ag—as=az;+ta,, (13.4)
one can write the nematic stress tensor as
(13.5)

take into account that while ¢ is a unit vector, the com-
ponents of n when projected into the xy plane scale as
sin@ and thus

n,=c,sind, n,=c,sin6 . (13.6)

Taking as an example the 7, term of the nematic stress
tensor, one can write
%yl(Njn,—N,-nj)Z%ylsinZG(Cjc,-—Cicj) . (13.7)

This is compared with the corresponding term in the
Sm-C stress tensor
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| 3.

nsin®

FIG. 8. Comparison between a nematic and a Sm-C liquid
crystal for which the directors are moving along a cone with top
angle 26. In the smectic case the stress tensor is expressed by c,
while in the nematic case n, the projection of which onto the
plane of the c director has a magnitude » sin6, is employed.

As(Cjc; —Cic;)=As6%(C;c; — Cyc;) . (13.8)
From these two expressions one thus concludes that the
coefficients A5 of the Sm-C system is the one that corre-
sponds to the coefficient 1y, of nematic liquid crystals.
By making the same comparison for the other
coefficients, one finally arrives at the results shown in
Table II.

We are now in a position to make some additional
statements regarding the two nematiclike viscosity
coefficients A, and As. It has already been shown [Egs.
(6.5)] and 7_»5 must be positive, a statement that corre-
sponds to the well known nematic relation [15] y,>0.
For a rodlike uniaxial nematic one knows [16] that a,
must be negative and furthermore, in the case of flow
alignment, which is by far the most common one, that
also aj is negative. From Eq. (13.3) one notices that this
implies 7, <0 and |y,| >v,;. Thus we expect that A, <0
and |A,| > A5 should be the most common, though not
necessary, relations for a Sm-C system.

In Table III we summarize the inequalities for the Sm-
C viscosity coefficients as derived throughout the present
paper. The first two groups of inequalities in the table
are based on thermodynamic arguments and must always
be fulfilled. The last group, on the other hand, consists of
inequalities that must be fulfilled under certain cir-
cumstances, e.g., depending on whether or not the system
exhibits flow alignment. Some of the inequalities in the
last group also depend on how far the comparison with
uniaxial rodlike nematic liquid crystals can be taken. In

TABLE II. Comparison between the five Leslie viscosities of
the nematic liquid crystals and the corresponding nematiclike
viscosity coefficients of a Sm-C liquid crystal.

Smectic-C
liquid crystal

Nematic
liquid crystal

Ho 2]

M3 [o41

B 3lastag)
&2 %1’2

As %7’1

T. CARLSSON, F. M. LESLIE, AND N. A. CLARK 51

the end, however, experimental observations must be
used to decide which of these inequalities is valid for a
Sm-C liquid crystalline system.

XIV. DISCUSSION

In this paper we have discussed the macroscopic flow
behavior of the Sm-C and the Sm-C* phases with the
stress tensor derived in Sec. III as a starting point. We
have shown how the governing equations of the system
consist of one torque equation—the b and the ¢ com-
ponents of which determine the external countertorque
needed to keep the smectic layers fixed, while the z com-
ponent governs the rotation of the ¢ director—and one
equation for the balance of linear momentum. Two
different flow geometries have been studied and the final
equations governing the flow behavior are summarized in
Sec. XI.

Presently, almost no experimental information regard-
ing the Sm-C viscosity coefficients exists. However, we
have been able to give some general guidelines for their
values, which are summarized in Tables I-III. Clearly
most of the viscosity coefficients must approach zero as
the system approaches the Sm-A phase, and from the
structure of the stress tensor it is possible to assign to the
coefficients the tilt angle dependence given by Egs. (4.1)
and (4.2). It is also possible, by thermodynamic reason-
ing, to derive a set of inequalities that must be fulfilled by
the viscosity coefficients. Furthermore, depending on
whether or not the system exhibits flow alignment when
sheared in the bookshelf geometry, one can derive some
further inequalities. In Sec. XIII we also showed by com-
parison with the nematic stress tensor how one can ob-
tain some additional information concerning some of the
viscosity coefficients.

As stated before, virtually no experimental information
regarding the Sm-C viscosity coefficients exists in the
literature. There is, however, one exception to this. In
studying the switching behavior of a ferroelectric system,
equations based on a “nematiclike” theory, similar to Eq.
(9.6b), have been employed. In this way the rotational
viscosity ¥ has been measured by different methods
[23-25]; a reasonable value for A5 obtained from these
experiments is As=0.1 Pas. If one wants to obtain nu-
merical values for the flow behavior of a cell in the
bookshelf geometry, apart from the coefficients As, one
also needs to assign values to the viscosity coefficients ?_»2,
Ko> 3, and [y, as well as to the elastic constants Bl and
B,. Several measurements of the elastic constant B, are
available in the literature [23-25], although measure-
ments of the constants B, and B, are scarce [26]. From
the existing data we can do no better than suggest a one-
constant approximation B; =B, =B~ 1071'N.

Using the guidelines given by Tables II and III, it is
possible to suggest a reasonable set of model parameters
for making numerical calculations. These are given in
Table IV. When suggesting fi;=0, we have utilized the
approximation a;=0, often exploited for nematic liquid
crystals. However, it must be emphasized that the pa-
rameters suggested in Table IV are not the consequences
of any measurements and could in the end prove to be far
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TABLE III. Summary of inequalities for the Sm-C viscosity coefficients. The first two groups of ine-
qualities must always be fulfilled by thermodynamic reasons. The inequalities belonging to the last
group are fulfilled under certain circumstances, which are stated in the table.

Inequality

Source and condition

As>0, 75>0

Ho>0

pot+ (s +As—2|X,))62>0
ﬂ0+(ﬁ4+xs+%l_¢3)92>0
toFa—2A;+Ay>0

Rotational motion
(inequalities are always fulfilled)

Effective viscosities
(inequalities are always fulfilled)

oty —2A + A+ (s + s+ 2R, — 2R, +As+1A6)02 >0

As <|A,]

A, <0

Flow alignment
(in W geometry)
Stable flow alignment angle corresponds
to a rodlike nematic liquid crystal
(in W geometry)
No flow alignment
(in W geometry)
Flow alignment corresponds
to a rodlike nematic liquid crystal
(in B geometry)

from the typical values these parameters exhibit. In any
event, they provide a consistent set of parameters, which
can be used for model calculations of the flow behavior of
the system in the bookshelf geometry.

When studying shear flow of the system we can gen-
erally do so in one of two different geometries (Figs. 4-7).
In the bookshelf geometry the system will or will not ex-
hibit flow alignment depending on whether or not the in-
equality (7.11) is fulfilled. In the case when the smectic
layers are sliding on top of each other, on the other hand,
flow alignment is always possible. By studying the
effective viscosities of the system [Egs. (10.5)] one can
also derive some additional inequalities [Egs. (10.6)] that
must be fulfilled by the viscosity coefficients. Also shown
in Sec. X is the existence of backflow. In most cases a ro-
tation of the c¢ director is coupled to the macroscopic
motion of the molecules in such a way that a nonzero ve-
locity gradient is developed for a nonzero ¢ [cf. Eq.
(10.4)].

In Sec. XII the importance of transverse flow effects is
demonstrated. In the bookshelf geometry such effects
create a transverse pressure gradient, which probably
causes permeation of molecules between the layers. If, on
the other hand, the smectic layers are parallel to the
bounding glass plates, a transverse flow is developed,
which in turn develops additional torques in the system.

TABLE IV. A suggested set of parameters to be used for
model calculations on the flow properties of the system in the
bookshelf geometry.

Viscosity coefficients (Pas) Elastic constants (N)

X2 Xs Ho Hs B El Ez Es
—0.12 01 02 O 003 107" 107" 107"

It is of course obvious that if the sample is bounded, the
transverse flow might be prohibited and instead a trans-
verse pressure gradient can be developed.

Today, the study of the dynamic behavior of Sm-C
liquid crystals is mainly limited to the study of switching
phenomena for ferroelectric Sm-C* liquid crystals in the
bookshelf geometry. The theoretical description of these
studies are normally based on some intuitive ‘“nematic-
like” theory. In this paper we have provided a complete
“exact” smectic theory for the analysis of dynamic prob-
lems of the Sm-C phase. Although the nematiclike ap-
proach to the problem provides equations that in many
cases qualitatively agree with the proper ones, this ap-
proach is too simple and will not give the correct scaling
of the relevant expressions in terms of 8. We have also
demonstrated that the complete study of the switching
behavior of the system must include backflow as well as
transverse flow effects. How important these complica-
tions turn out to be depends on the values of some
relevant viscosity coefficients for which we lack experi-
mental information. Thus the experimental determina-
tion of these coefficients should be the next step towards a
better understanding of the general macroscopic flow
properties of Sm-C and Sm-C* liquid crystalline systems.

APPENDIX

In this appendix we use a mechanical analog to develop
a more physical understanding of the external and con-
straint torques acting on n during rotation on the tilt
cone in the smectic-C phase. We model the rotating mol-
ecule as a solid object having the mean smectic-C molecu-
lar shape rotating about a fixed point in a viscous fluid.
The mean molecular shape in the smectic-C phase can be
represented by the bent cylinder of Fig. 9(a). This shape
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embodies the monoclinic C,, symmetry of the smectic-C
molecular environment. For rotation at small Reynolds
number in a viscous fluid, the torque I' produced by a
body in rotation with angular velocity « is given by
I'"=—yw, where y is a tensor of drag coefficients. A
proper choice of the principal axis coordinate system will
diagonalize y, and for the object of Fig. 9(a) one principal

axis is the twofold rotation axis ¢ For the purposes of

(b)

FIG. 9. Solid objects representing the mean molecular shape
in the smectic-C phase for modeling the coupling of director
orientation and torque by rotation of a solid body in a viscous
fluid: (a) Bent cylinder shape reflecting the monoclinic symme-
try of the smectic-C phase. (b) orthorhombic box equivalent for
the present purposes. The box is constrained to rotate about the
thin rod along Z.
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this discussion nothing is lost by simplifying the object
shape to the biaxial orthorhombic box of Fig. 9(b), for
which y is diagonal in the coordinate frame having axes
parallel to the three twofold symmetry axes of the box.
We orient the box in the smectic-C phase as shown in
Fig. 9(b), with its longest edge parallel to n, which is T.
The smectic-C symmetry demands that one of the other
twofold axes be along ¢ and we choose this to be the
shortest edge. Nothing significant changes in the discus-
sion to follow if the other choice were to be made. With
this geometry we can define the three rotational viscosi-
ties v,, ¥4, and v, for rotation of the box about its sym-
metry axes T, 6, and ¢, respectively,

Ll=—v.0, Ti=—rees Iy= (A1)

We now consider attaching the box to a thin rod con-
strained by bearings to remain parallel to Z, but free to
rotate about Z, such that

0=20,=2¢=¢[ — 0 sin0-+7 cos] .

T VD -

(A2)

We apply a net torque ['™" to the box, where ' is a sum
of external and constraint torques, in which case
ret+rr=0,i.e.,

[ret= 4 Te= —[7=§[ — By osin+1y, cosb] . (A3)

The constraint torque I'“ (due to the rod) can have no Z
component and its /gS component (note that ¢=>b) will
simply balance the ¢ component of I'*** (due to external
forces), leaving I'}*=0 and 6 constant,
ryt= I‘;’“ +I'3=0. (A4)
Note that the orientation of '™ is independent of w, de-
pending only on y,/¥, and 6. Thus, for a given external
torque the remaining ¢ component of the constraint
torque I'{ must be applied by the bearings in order to ob-
tain [fet/T2'= —(y,/y,)tand, which will maintain the
rod orientation along Z.
In general, the external torque that affects the change
of ¢ will have both ferroelectric ZI'/ and dielectric and
magnetic ZI' components

[*t=3T1/ 40T =% cosOT/ +O(I—sind/) ,  (AS)

while the most general form the countertorque can adopt
is
Ir“=Tic+TI} ¢ I¢ sin6 + ' cos60 + I ¢ (A6)

Writing down the T and 0 components, respectively, of
the general torque equation I'**'+T°+TI"=0 gives, by
the use of Egs. (A3), (A5), and (A6),

dy, cosd=T/cosf+T¢sind ,
&y osind=T"sind—T'¢ cosd—T¢,

(A7a)
(A7b)

from which we obtain ¢ and I'¢ in terms of the external
torque as

_ I'/—TI'“sin0
¥y, cos’0+y,sin%6

(A8)
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[¢=(y,—7q)sinf cosd¢ — € cosh . (A9)
Comparing the terms including ¢ in these expressions
with Egs. (6.3c) and (6.7b) we can relate the viscosities A5
and 75 to the model viscosities of Egs. (A1)

2As=y, 00529+ye sin%6 , (A10a)

¥ g)siné cos6 . (A 10b)

=( Yr—
The coefficient y 4 is the viscosity for the rotation of n and
v, is the viscosity for rotation about n. In an uniaxial
nematic liquid crystal the y, term is absent, but arises in
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the smectic-C phase from the biaxiality of the molecular
environment. As the temperature is raised towards the
smectic-C ~Sm-A4 transition, 6 decreases, apparently
leaving a nonzero As=y, at 6=0. However, if ¥ is the
orientational order parameter for ordering the molecular
short axis in the smectic-C mean field, then we expect

~1? and ¥~ @ so that the biaxiality of the smectic-C
phase also decreases with 6, giving 7, ~6* and As an
overall 62 dependence When 0 is large we expect ¢?~1
and v,/ve~|¥|XD/L)~D/L~0.17 for  typical
smectic-C molecules (D~5 A and L~30 A). The
coefficient 75 determines the magnitude of the constraint
torque, varying as 75~ 6 for small 6.
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